Определение 1. Перестановка чисел $1, \ldots, n$ – это взаимно однозначное отображение множества $\{1, \ldots, n\}$ на себя. Множество перестановок чисел $1, \ldots, n$ обозначается S_n и называется симметрической группой.

Задача $\mathbf{1}^{\varnothing}$. Сколько элементов в симметрической группе S_n ?

Перестановки записывают таблицами вида $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \end{pmatrix}$; такая таблица означает перестановку $1\mapsto 2$ (то

есть 1 переходит в 2), $2\mapsto 4$, $3\mapsto 1$, $4\mapsto 3$. Вообще, если $\sigma\in S_n$, то $\sigma=\begin{pmatrix} 1 & 2 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{pmatrix}$.

Задача 2 $^{\circ}$. Сколько разных таблиц размера $2 \times n$ задают одну и ту же перестановку $^{\circ}$

Определение 2. Произведение перестановок $\sigma, \tau \in S_n$ определяется так: $\sigma \tau(i) = \sigma(\tau(i))$ (для произвольных отображений σ и τ такое произведение обычно называется композицией отображений). Например, если

$$\tau = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix}, \qquad \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \end{pmatrix}, \qquad \text{то} \qquad \sigma\tau = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 2 & 3 \end{pmatrix}.$$
 Отметим, что сначала применяется второй сомножитель, а потом первый.

Задача 3 $^{\varnothing}$. Перед Петей на столе лежат в ряд n шариков, пронумерованные по порядку числами от 1 до n. Петя переставил местами шарики. Пусть α сопоставляет числу k число $\alpha(k)$ — номер места в ряду, на котором оказался шарик под номером k. **a)** Покажите, что α — перестановка из S_n . **6)** Затем Петя повторил движения рук (опять переставил шарики, даже не глядя на них). На этот раз шарик под номером k оказался на месте под номером $\beta(k)$. Выразите перестановку β через перестановку α .

Задача 4 . a) Всегда ли $\sigma \tau = \tau \sigma$? **6)** Пусть $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \end{pmatrix}, \ \tau = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2 \end{pmatrix}$. Найти $\sigma \tau$ и $\tau \sigma$.

Задача 5 . Найдите такую перестановку e, что $e\alpha = \alpha e = \alpha$ при всех α (она называется тождественной).

Определение 3. Перестановка α^{-1} , такая что $\alpha \alpha^{-1} = e$, называется *обратной* к перестановке α .

Задача 6 $^{\varnothing}$. **a)** Докажите, что α^{-1} существует и единственна. **б)** Найдите α^{-1} для каждой α из S_3 .

Задача 7 $^{\varnothing}$. Какой шарик стоит на месте k после применения перестановки α из задачи 3?

Задача 8 $^{\varnothing}$. Пусть p — простое число, $\mathbb{Z}/p\mathbb{Z}$ — классы вычетов по модулю p. Докажите, что умножение на ненулевой остаток $a \in \mathbb{Z}/p\mathbb{Z}$ является перестановкой ненулевых остатков $\{1,2,\ldots,p-1\}$, причём a=1соответствует тождественной перестановке, обратный элемент — обратной, а произведение — композиции.

Задача 9 $^{\varnothing}$. P(x) и Q(x) — многочлены с целыми коэффициентами. Пусть P(Q(x)) — x делится на 100 при любом целом x. Докажите, что тогда Q(P(x)) - x делится на 100 при любом целом x.

Задача 10^{\varnothing}. Во дворе стоят **а)** 17 **б)** 18 мальчиков. У каждого в руках мяч. Вдруг они одновременно кинули свои мячи друг другу. Петя и Вася наблюдали за ними. Петя утверждает, что может мысленно расположить мальчиков в круг так, что каждый кинул стоящему через одного по часовой стрелке. Аналогично Вася, но в кругу Васи каждый кидает стоящему через двух по часовой стрелке. Не врут ли Петя и Вася?

Определение 4. Если элементы a_1, a_2, \ldots, a_k различны, то перестановка, при которой $a_1 \mapsto a_2, a_2 \mapsto a_3, \ldots,$ $a_k \mapsto a_1$, а все остальные элементы множества $\{1, \dots, n\}$ переходят в себя, называется *циклом* и обозначается $(a_1 \ a_2 \ \dots \ a_k)$. Число k называют ∂ линой цикла. Цикл длины 2 называется mранспозицией.

Задача 11[©]. Сколько всего различных циклов длины k в S_n ?

Задача 12 $^{\varnothing}$. Докажите, что любая перестановка из S_n однозначно, с точностью до порядка множителей, разлагается в произведение «непересекающихся» (независимых) циклов (циклы длины 1 обычно пропускают).

Задача 13 $^{\circ}$. Какие перестановки из S_4 — не циклы? Разложите их в произведение независимых циклов.

Задача 14. Текст на русском языке зашифрован программой, заменяющей взаимно однозначно каждую букву на некоторую другую. a) Докажите, что существует такое число k, что текст расшифровывается применением k раз шифрующей программы. **6)** Найдите хотя бы одно такое k.

Определение 5. Минимальное натуральное k такое, что α^k — тождественная перестановка, называется nopядком перестановки α и обозначается ord α .

Задача 15 . Найдите порядки: **a)** перестановок из S_3 ; **б)** цикла длины k; **в)** перестановок задачи 10.

Задача 16[©]. Найдите все α из S_n , для которых $\alpha = \alpha^{-1}$.

Задача 17 $^{\oslash}$. Пусть α — это $(1\ 2\dots n)^k$. На сколько независимых циклов раскладывается α , каковы их длины?

Задача 18 $^{\oslash}$. Найдите максимальный возможный порядок перестановки **a)** из S_5 ; **б)** из S_{13} .

Задача 19 $^{\varnothing}$. Докажите, что порядок перестановки из S_n делит n!.