- **Задача 1.** У каждого целого числа от n+1 до 2n включительно (где n- натуральное) возьмем наибольший нечетный делитель и сложим все эти делители. Докажите, что получится n^2 .
- Задача 2. Сколькими способами можно расставить на полке двухтомник Марка Твена, трёхтомник Николая Гоголя и десятитомник Александра Пушкина, чтобы а) «свои стояли со своими», но не обязательно по порядку? б) тома каждого автора встречались на полке в порядке возрастания, но не обязательно подряд?
- Задача 3. На карусели 7 двухместных верблюдов. Сколькими способами можно рассадить на неё 14 детей?
- Задача 4. Дан квадрат 100×100 клеток. Сколько есть прямоугольников, чьи вершины лежат в центрах этих клеток?
- **Задача 5.** Докажите, что $C_a^0 \cdot C_b^m + C_a^1 \cdot C_b^{m-1} + \ldots + C_a^{m-1} \cdot C_b^1 + C_a^m \cdot C_b^0 = C_{a+b}^m$.
- Задача 6. Пусть для любого разбиения множества вершин графа на две непересекающихся группы существует ребро, соединяющее вершины их разных групп. Докажите, что тогда граф связен.
- Задача 7. Докажите, что в связном графе любые два длиннейших несамопересекающихся по ребру пути имеют общую вершину.
- Задача 8*. В стране между некоторыми парами городов осуществляются двусторонние беспосадочные авиарейсы. Известно, что из любого города в любой другой можно долететь, совершив не более 100 перелетов. Кроме того, из любого города в любой другой можно долететь, совершив четное число перелетов. При каком наименьшем натуральном d из любого города можно гарантированно долететь в любой другой, совершив четное число перелетов, не превосходящее d? (Разрешается посещать один и тот же город или совершать один и тот же перелет более одного раза.)
- Задача 9. Количество членов геометрической прогрессии чётно. Сумма всех её членов в 3 раза больше суммы членов, стоящих на нечётных местах. Найдите знаменатель прогрессии.
- **Задача 10.** В некоторой арифметической прогрессии $a_m = -a_n$ для каких-то натуральных m и n, где m < n. При каких m и n эта прогрессия обязательно содержит нуль и под каким номером?
- **Задача 11.** Для натуральных m и n пусть $S_m(n)=1^m+2^m+\ldots+n^m$. Докажите, что **a)** для любых натуральных i и k выполнено $(i+1)^{k+1}-i^{k+1}=i^k\cdot C_{k+1}^1+i^{k-1}\cdot C_{k+1}^2+\ldots+i\cdot C_{k+1}^k+1;$
- б) $(n+1)^{k+1}-1=S_k(n)\cdot C_{k+1}^1+S_{k-1}(n)\cdot C_{k+1}^2+\ldots+S_1(n)\cdot C_{k+1}^k+n$ (используйте пункт a!).
- в) Как по формулам для $S_1(n), \ldots, S_{k-1}(n)$ найти формулу для $S_k(n)$?
- г) Найдите $S_2(n)$, $S_3(n)$ и $S_4(n)$.
- д) Докажите, что $S_k(n)$ многочлен от n. Найдите его степень, старший и свободный члены.
- **Задача 12.** При каких целых n число $(n^2 n + 1)/(n 2)$ целое?
- **Задача 13.** Решите уравнение $x^2 + y^2 = 3z^2$ в целых числах.
- **Задача 14.** Пусть натуральные числа a и b взаимно просты. Докажите, что любое $k \in \mathbb{N}$, начиная с некоторого, представимо в виде линейной комбинации k = am + bn, где $m, n \in \mathbb{N}$.
- **Задача 15.** Равномощно ли отрезку множество точек $[0;1] \cup [2;3] \cup [4;5] \cup \dots$?
- Задача 16. Докажите, что множество точек любого треугольника (с внутренностью) на плоскости равномощно множеству точек любого прямоугольника (с внутренностью) на плоскости.
- Задача 17. Равномощны ли множество всевозможных бесконечных последовательностей целых чисел и множество всевозможных возрастающих бесконечных последовательностей целых чисел?

2 a	2 6	3	4	5	6	7	8	9	10	11 a	11 б	11 B	11 Г	11 д	12	13	14	15	16	17

Листок №34 Страница 2

- **Задача 18.** Найдите коэффициент при x^{179} у многочлена $(1-x+x^4)^{60}(1+x+x^4)^{60}$.
- **Задача 19.** Найдите такой многочлен P степени 3, что выполнены равенства P(1)=1, P(2)=5,P(3) = 0, P(4) + P(5) = 8.
- **Задача 20.** Найдите все такие многочлены P, что выполнено тождество xP(x-1)=(x-10)P(x).
- **Задача 21.** Про последовательность (a_n) известно, что $\exists a \, \exists \varepsilon > 0 \, \exists N \in \mathbb{N} : \forall n > N \, |a_n a| < \varepsilon$. Обязательно ли эта последовательность ограничена? Обязательно ли она имеет предел?
- **Задача 22.** Рассмотрим условие $\forall \varepsilon > 0 \ \exists m \in \mathbb{N} \ \forall n \geqslant m : |x_n a| > \varepsilon$. Эквивалентно ли оно условию: **a)** a не является пределом $\{x_n\}$; **б)** $\{x_n\}$ неограничена; **в)** $\{x_n\}$ не имеет кормушек.
- **Задача 23.** Найдите такое $n \in \mathbb{N}$, что $\left(\frac{4}{5}\right)^n < 10^{-179}$.
- Задача 24. Найдите а) $\lim_{n\to\infty} \frac{1+2+\ldots+n}{n+2} \frac{n}{2};$ б) $\lim_{n\to\infty} (n-\sqrt{n^2+3n});$ в) $\lim_{n\to\infty} n(\sqrt{n^2-1}-n);$ г) $\lim_{n\to\infty} \frac{n^3+1}{2n^3-n^2-7};$ д) $\lim_{n\to+\infty} \sqrt[n]{1^n+2^n+\ldots+9^n};$ е) $\lim_{n\to\infty} \left(1+\frac{1}{n^2}\right)^n.$
- **Задача 25.** Последовательности (a_n) и $(a_n \cdot b_n)$ имеют предел. Обязательно ли (b_n) имеет предел?
- **Задача 26.** Верно ли, что для последовательности (a_n) с ненулевыми членами условие «в каждом отрезке находится конечное число элементов (a_n) » равносильно условию « $(\frac{1}{a_n})$ бесконечно малая»?
- **Задача 27.** Найдите такое N, что при всех целых k > N верно неравенство $100 \cdot k^5 + k^3 + 1000 < k^6$.
- **Задача 28.** Что больше при $k \gg 0$: $100 \cdot k! + 200^k$ или $k^k + 2^k$?
- **Задача 29.** Про последовательность (x_n) известно, что она имеет предел и содержит бесконечно много положительных и бесконечно много отрицательных членов. Докажите, что (x_n) бесконечно малая.
- **Задача 30.** Найдите предел последовательности $\lim_{n\to\infty}\frac{F_n}{3^n}$, где F_n-n -е число Фибоначчи.
- Задача 31. Пусть $\lim_{n\to\infty} x_n = 16$. Найдите $\lim_{n\to\infty} \sqrt[4]{x_n}$.
- Задача 32. Найдите предел (x_n) , если **a)** $x_1=0$ и $x_{n+1}=\frac{x_n+3}{4}$; **6)** $x_1=a, x_2=b, x_{n+2}=\frac{x_{n+1}+x_n}{2}$ при $n \in \mathbb{N}$.
- **Задача 33.** Рассмотрим функцию $f \colon \mathbb{N} \times \mathbb{N} \to \mathbb{R}$. Известно, что существуют пределы $\lim_{n\to\infty} \left(\lim_{m\to\infty} f(m,n)\right)$ и $\lim_{m\to\infty} \left(\lim_{n\to\infty} f(m,n)\right)$. Верно ли, что эти пределы обязательно совпадают?
- **Задача 34.** Число $x \in (0;1)$ назовём *вычислимым*, если есть конечное правило (данное в математических знаках или словесное), которое позволяет для каждого $n \in \mathbb{N}$ определить n-ый знак после запятой в десятичной записи x. **a)** Докажите, что множество вычислимых чисел из интервала (0:1) счётно. 6) Выпишем десятичные записи всех вычислимых чисел в таблицу, и диагональным методом построим вычислимое число, не входящее в таблицу. Объясните это противоречие.
- Задача 35. Решите в натуральных числах уравнения:
- a) n(n+1) = m(m+2); 6) a! + b! + c! = d!; B) $\frac{1}{a} + \frac{1}{b} = 1$; r) $x^2 + 3x = y^2$.
- Задача 36. Можно ли уместить два точных куба между соседними точными квадратами?
- **Задача 37*.** Найдите $\lim_{n\to\infty}\frac{1^1+2^2+\ldots+n^n}{n^n}$.

18 19	21	22 a	22 б	22 B	23	24 a	24 б	24 B	24 Г	24 Д	24 e	25	26	27	28	29	30	31	32 a	32 6	33	34 a	34 б	35 a	35 б	35 B	35 Г	36	37