Задача 1. Пусть f непрерывна на [a,b], дифференцируема на (a,b) и $f'(x_0) > 0$ в некоторой точке $x_0 \in (a,b)$. а) Найдется ли такая окрестность U точки x_0 , что для всех $x \in U$ если $x > x_0$, то $f(x) > f(x_0)$, а если $x < x_0$, то $f(x) < f(x_0)$? **б)*** Верно ли, что f монотонно возрастает в некоторой окрестности x_0 ?

Определение 1. Точку c называют точкой локального максимума f, если $f(c) \geqslant f(x)$ для всех x из некой окрестности с. Если верно строгое неравенство, говорят о строгом локальном максимуме. Аналогично определяют точку (строгого) локального минимума. Такие точки называют точками (строгого) локального экстремума.

Задача 2. а) (Теорема Ферма) Пусть f непрерывна на [a,b] и дифференцируема на (a,b). Докажите, что если $x \in (a,b)$ — точка локального максимума (минимума) f, то f'(x) = 0. 6) Верно ли обратное?

Задача 3. а) Пусть f определена на [a,b] и дифференцируема на (a,b). Тогда максимум (минимум) f на [a,b]достигается и может быть только в a, b и в точках $x \in (a, b)$, где f'(x) = 0. 6) Если f дифференцируема на \mathbb{R} и $f(x) \to +\infty$ при $x \to \pm \infty$, то минимум f на $\mathbb R$ достигается, и в точке максимума x обязательно f'(x) = 0.

Задача 4. Докажите для всех x: **a)** $x^4 + x^3 \geqslant -\frac{3^3}{4^4}$; **6)** $x^6 - 6x + 5 \geqslant 0$; **B)** $x^4 - 4x^3 + 10x^2 - 12x + 5 \geqslant 0$.

Задача 5. Найдите наибольшее и наименьшее значение при $x \in [0,1]$ функций из задачи 4.

Задача 6. Найдите наименьшее значение при x > 0: a) $x + \frac{1}{x}$; b) $x^2 + 2x + \frac{4}{x}$.

Задача 7. (Теорема Ромя) Пусть f непрерывна на [a,b] и дифференцируема на (a,b), и, кроме того, f(a)=f(b). Докажите, что найдётся такая точка $x \in (a, b)$, что f'(x) = 0.

Задача 8. (*Теорема Лагранжа*) Пусть f непрерывна на [a,b] и дифференцируема на (a,b). Докажите, что найдётся такое $x \in (a,b)$, что $f'(x) = \frac{f(b)-f(a)}{b-a}$ и объясните геометрический смысл этой теоремы.

Задача 9. Пусть f непрерывна на [a,b] и дифференцируема на (a,b). Докажите, что если для всех $x \in (a,b)$ выполнено: a) f'(x) = 0, то f постоянна на [a, b]. 6) f'(x) > 0, то f возрастает на [a, b].

Задача 10. Докажите, что для для всех x>0 выполнены неравенства: **a)** $\sin x>x-\frac{x^3}{6}$; **6)** $1-\frac{x^2}{2}<\cos x<1-\frac{x^2}{2!}+\frac{x^4}{4!}$; **в)*** $e^x>1+x+\frac{x^2}{2}+\ldots+\frac{x^n}{n!}$, где $n\in\mathbb{N}$.

Задача 11*. Найдите все дифференцируемые на \mathbb{R} функции f, такие что f'(x) = f(x) для всех $x \in \mathbb{R}$.

Задача 12. а) Какую наибольшую площадь может иметь трапеция, три стороны которой равны 1?

- 6) Какова наибольшая возможная площадь четырёхугольника, 3 стороны которого равны 1?
- в) У какого равностороннего шестиугольника со стороной 1 площадь наибольшая?

Задача 13. Из пункта A, находящегося в лесу в 5 км от прямой дороги, пешеходу нужно попасть в пункт B, расположенный на этой дороге в 13 км от A. Наибольшая скорость пешехода на дороге — 5 км/ч, а в лесу — 3 км/ч. За какое наименьшее время пешеход сможет попасть из A в B?

Задача 14. Даны две точки A и B по разные стороны от прямой l, разделяющей две среды. Требуется найти такую точку D на прямой l, чтобы время преодоления светом пути ADB было минимальным при условии, что скорость распространения света в верхней среде v_1 , а в нижней — v_2 . Докажите, что такая точка D существует и определяется условием $\sin \alpha_1/\sin \alpha_2 = v_1/v_2$, где α_1 и α_2 — углы, образованные прямыми AD и BD с прямой, проходящей через точку D перпендикулярно l.

Задача 15. Найдите точку параболы $y = x^2$, ближайшую к точке (-1; 2).

Задача 16. Найдите на эллипсе $4x^2 + 9y^2 = 36$ точку, касательная в которой образует вместе с осями координат треугольник минимально возможной площади.

Задача 17. В круглый бокал, осевое сечение которого — график функции $y=x^4$, опускают вишенку — шар радиусом r. При каком наибольшем r шар коснётся нижней точки дна? (Другими словами, каков максимальный радиус r круга, лежащего в области $y \le x^4$ и содержащего начало координат)?

Задача 18. Пусть f определена и дифференцируема на (a,b). **a)** Верно ли, что f' непрерывна на (a,b)?

- **б)** Пусть у f' существуют пределы слева и справа в точке $x_0 \in (a,b)$. Верно ли, что они совпадают?
- в) (Теорема Дарбу) Пусть $[c,d] \subset (a,b)$. Докажите, что f' принимает на [c,d] все значения между f'(c) и f'(d).

Задача 19*. Пусть функция f дифференцируема в некоторой окрестности \mathcal{U} точки a, причём a — точка строгого локального минимума f. Всегда ли найдётся ли такая окрестность точки a, что f'(x) < 0 для всех x < a из этой окрестности, и f'(x) > 0 для всех x > a из этой окрестности?

1 a	1 б	2 a	2 6	3 a	3 6	4 a	4 б	4 B	5	6 a	6 6	6 B	7	8	9 a	9 6	10 a	10 ნ	10 B	11	12 a	12 б	12 B	13	14	15	16	17	18 a	18 б	18 B	19